If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7g^2+8g-3=0
a = 7; b = 8; c = -3;
Δ = b2-4ac
Δ = 82-4·7·(-3)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{37}}{2*7}=\frac{-8-2\sqrt{37}}{14} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{37}}{2*7}=\frac{-8+2\sqrt{37}}{14} $
| 7y=-57 | | (5x-3)/2-1=14 | | -8x+40=2+3(6-4x) | | -3x-118=80-12x | | x/0.4=9/11 | | 8+v/2=16 | | 5g(g+9)-2(1-g)=1 | | -3y-14=-29 | | 2(8+8m)=3m-23 | | 5r(r+9)-2(1-r)=1 | | u/5=-11 | | -189-x=-12x+75 | | 8x+2=360 | | 5x+3-7x+4=2x-4x+4 | | 12x-30=60-6x | | -3-3+8=-8-9x-1x | | -12=2(5y-6) | | 2w-83=17 | | 3x^2-23=6 | | 6y-8=13+6y | | 42y=6×-3 | | 4x-247=77-14x | | f+167=93 | | 4x-1/2(10x-2)=26 | | (1/4)*4y=1y | | -5x-6x=8 | | -6(n+1)+5(2-2n)=-76 | | -48=-4(-3x-5)-4(1-5x) | | 3(5-2x)-8=11 | | -171+14x=49+4x | | 71.5=5x | | 7y+2(y+6)=39 |